Discover great EU-funded Innovations
Excellent Science INNOVATION
Development of new metamaterials for MRI applications
SHARE:
Market Maturity: Business Ready
These are innovations that are putting concrete market-oriented ideas together and are, for example, pursuing market studies, business plans, engagements with relevant partner and end-users. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project M-CUBE with an end date of 31/12/2020
  • Read more about this project on CORDIS
Description of Project M-CUBE
M-Cube aims at changing the paradigm of High-Field MRI and Ultra High-Field antennas to offer a much better insight on the human body and enable earlier detection of diseases. Our main objective is to go beyond the limits of MRI clinical imaging and radically improve spatial and temporal resolutions. The clinical use of High-field MRI scanners is drastically limited due to the lack of homogeneity and to the Specific Absorption Rate (SAR) of the Radio Frequency (RF) fields associated with the magnetic resonance. The major way to tackle and solve these problems consists in increasing the number of active RF antennas, leading to complex and expensive solutions. M-Cube solution relies on innovative systems based upon passive metamaterial structures to avoid multiple active elements. These systems are expected to make High-Field MRI fully diagnostically relevant for physicians. To achieve these expectations, M-Cube consortium will develop a disruptive metamaterial antenna technology. This we will able us to tackle both the lack of homogeneity and SAR barriers. Metamaterials are composite structured manmade materials designed to produce effective properties unavailable in nature (e.g. negative optical index). They allow us to tailor electromagnetic waves at will. Thus, the scientifically ambitious idea is to develop antennas based on this unique ability for whole body coil. This technological breakthrough will be validated by preclinical and clinical tests with healthy volunteers. M-Cube gathers an interdisciplinary consortium composed of academic leaders in the field, eight universities, and two promising SMEs. Physicists, medical doctors and industrial actors will work closely all along the implementation of the project to guarantee the success this novel approach, a “patient-centered” solution which will pave the way for a more accurate diagnosis in the context of personalized medicine and will enable to detect a disease much earlier that is currently possible.

Innnovation Radar's analysis of this innovation is based on data collected on 07/02/2018.
The unique id of this innovation in the European Commission's IT systems is: 13101