Excellent Science INNOVATION
NOMAD Encyclopedia Service: allows users to see, compare, explore, and understand computed materials data
SHARE:
Market Maturity: Tech Ready
These are innovations that are progressing on technology development process (e.g. pilots, prototypes, demonstration). Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
Location of Key Innovators developing this innovation
Key Innovators
BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION
BARCELONA, ES
Higher Education Institute / Research Centre
HUMBOLDT-UNIVERSITAET ZU BERLIN
BERLIN, DE
Higher Education Institute / Research Centre
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
MUENCHEN, DE
Higher Education Institute / Research Centre
The EU-funded Research Project
This innovation was developed under the Horizon 2020 project NoMaD with an end date of 31/10/2018
Description of Project NoMaD
Essentially every new commercial product, be they smart phones, solar cells, batteries, transport technology, artificial hips, etc., depends on improved or even novel materials. Computational materials science is increasingly influential as a method to identify such critical materials for both R&D. Enormous amounts of data, precious but heterogeneous and difficult to access or utilise, are already stored in repositories scattered across Europe. The NoMaD CoE will open new HPC opportunities by enabling access to this data and delivering powerful new tools to search, retrieve and manage it.NoMaD will foster sharing of all relevant data, building on the unique CECAM, Psi-k and ETSF communities, putting Europe ahead of materials science in other continents. Unprecedented, already initialised networking with researchers, with industry, with students and with other stakeholders will guarantee relevance and end-user value. NoMaD will become a crucial tool for atomistic simulations and multi-scale modelling in the physical, materials, and quantum-chemical sciences. This field is characterised by a healthy but heterogeneous eco-system of many different codes that are used at all HPC centers worldwide, with millions of CPU hours spent every day, some of them at petascale performance. NoMaD will integrate the leading codes and make their results comparable by converting (and compressing) existing inputs and outputs into a common format, thus making these valuable data accessible to academia and industry:NoMaD will develop “big-data analytics” for materials science. This will require novel algorithms, e.g., for statistical learning based on the created materials encyclopedia, offering complex searches and novel visualisations. These challenges exploit the essential resources of our HPC partners. Without the infrastructure and services provided by the NoMaD CoE, much of the information created with the above mentioned petascale (towards exascale) computations would be wasted.

Innnovation Radar's analysis of this innovation is based on data collected on 06/12/2018.