Secure Networks & Computing INNOVATION
A one-stop solution to NM characterisation (ACEnano toolbox)
SHARE:
Market Maturity: Tech Ready
These are innovations that are progressing on technology development process (e.g. pilots, prototypes, demonstration). Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as having a High” level of Market Creation Potential. Only innovations that are showing multiple signals of market creation potential are assigned a value under this indicator system. Learn more
Women-led innovation
A woman had a leadership role in developing this innovation in at least one of the Key Innovator organisations listed below.
Go to Market needs
Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:
  • Prepare for Market entry
  • Secure capital
Location of Key Innovators developing this innovation
Key Innovators
EDELWEISS CONNECT GMBH
ZEININGEN, CH
Small or Medium Enterprise
STICHTING WAGENINGEN RESEARCH
WAGENINGEN, NL
Higher Education Institute / Research Centre
THE UNIVERSITY OF BIRMINGHAM
BIRMINGHAM, UK
Higher Education Institute / Research Centre
The EU-funded Research Project
This innovation was developed under the Horizon 2020 project ACEnano with an end date of 31/12/2020
Description of Project ACEnano
An increasing number of nanomaterials (NMs) are entering the market in every day products spanning from health care and leisure to electronics, cosmetics and foodstuff. Nanotechnology is a truly enabling technology, with unlimited potential for innovation. However, the novelty in properties and forms of NMs makes the development of a well-founded and robust legislative framework to ensure safe development of nano-enabled products particularly challenging. At the heart of the challenge lies the difficulty in the reliable and reproducible characterisation of NMs given their extreme diversity and dynamic nature, particularly in complex environments, such as within different biological, environmental and technological compartments. Two key steps can resolve this: 1) the development of a holistic framework for reproducible NM characterisation, spanning from initial needs assessment through method selection to data interpretation and storage; and 2) the embedding of this framework in an operational, linked-up ontological regime to allow identification of causal relationships between NMs properties, be they intrinsic, extrinsic or calculated, and biological, (eco)toxicological and health impacts fully embedded in a mechanistic risk assessment framework. ACEnano was conceived in response to the NMBP 26 call with the aim to comprehensively address these two steps. More specifically ACEnano will introduce confidence, adaptability and clarity into NM risk assessment by developing a widely implementable and robust tiered approach to NM physico-chemical characterisation that will simplify and facilitate contextual (hazard or exposure) description and its transcription into a reliable NMs grouping framework. This will be achieved by the creation of a conceptual “toolbox” that will facilitate decision-making in choice of techniques and SOPs, linked to a characterisation ontology framework for grouping and risk assessment and a supporting data management system.

Innnovation Radar's analysis of this innovation is based on data collected on 16/06/2019.