Discover
Great EU-funded Innovations

Innovation

A SW architecture ecosystem for distributing big-data workloads along the compute continuum while providing real-time guarantees

Market Maturity

Exploring: These are innovations that are actively exploring value creation opportunities.More about market maturity categories

Innovation topic

Deep Tech

Date of analysis

Innovation Radar's analysis of this innovation is based on data collected on 04/10/2019

Go to market needs

Needs that, if addressed, can increase the chances this innovation gets to (or closer to) the market incude:

  • Prepare for Market entry
  • Scale-up market opportunities
  • Market Creation Potential

    This innovation was assessed by the JRC’s Market Creation Potential indicator framework as having a “High” level of Market Creation Potential. Only innovations that are showing multiple signals of market creation potential are assigned a value under this indicator system.

    Project

    This innovation was developed under the Horizon 2020 project CLASS. Details of this project are provided below:

    Project acronym: CLASS

    Project Title: Edge and CLoud Computation: A Highly Distributed Software Architecture for Big Data AnalyticS

    Project description: Big data applications processing extreme amounts of complex data are nowadays being integrated with even more challenging requirements such as the need of continuously processing vast amount of information in real-time. Current data analytics systems are usually designed following two conflicting priorities to provide (i) a quick and reactive response (referred to as data-in-motion analysis), possibly in real-time based on continuous data flows; or (ii) a thorough and more computationally intensive feedback (referred to as data-at-rest analysis), which typically implies aggregating more information into larger models. Given the apparently incompatible requirements, these approaches have been tackled separately although they provide complementary capabilities. CLASS aims to develop a novel software architecture to help big data developers to combine data-in-motion and data-at-rest analysis by efficiently distributing data and process mining along the compute continuum (from edge to cloud) in a complete and transparent way, while providing sound real-time guarantees. CLASS aims at adopting (1) innovative distributed architectures from the high-performance domain; (2) timing analysis methods and energy-efficient parallel architectures from the embedded domain; and (3) data analytics platforms and programming models from the big-data domain. The capabilities of the CLASS framework will be demonstrated on a real smart-city use case, featuring a heavy sensor infrastructure to collect real-time data across a wide urban area, and prototype cars equipped with heterogeneous sensors/actuators, V2I connectivity, and cluster support to present the innovative capabilities to drivers. Representative applications for traffic management and advanced driving assistance domains have been selected to efficiently process very large heterogeneous data streams in real-time, providing innovative services while preparing the technological background for the advent of autonomous vehicles

    Project end date: 31/12/2020

    More info:

    • Read more about this project on CORDIS (find names of contact persons and their phone numbers on the CORDIS page)

    • Details of this project on the Horizon 2020 dashboard

    Key Innovator(s)

    BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION

    BARCELONA, ES

    Higher Education Institute / Research Centre

    IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD

    PETACH TIKVA, IL

    Large Enterprise

    ATOS SPAIN SA

    MADRID, ES

    Large Enterprise