Deep Tech INNOVATION
Human Injury Biomechanics Database
SHARE:
Market Maturity: Market Ready
These are innovations that are outperforming in innovation management and innovation readiness, and are considered to be "Ready for the market". Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Location of Key Innovators developing this innovation
Key Innovators
TECHNISCHE UNIVERSITAET MUENCHEN
MUENCHEN, DE
Higher Education Institute / Research Centre
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 9
Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

The UN explains: "Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure."

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project ILIAD with an end date of 31/12/2020
Description of Project ILIAD
Today, intralogistic services have to respond quickly to changing market needs, unforeseeable trends and shorter product life cycles. These drivers pose new demands on intralogistic systems to be highly flexible, rock-solid reliable, self-optimising, quickly deployable and safe yet efficient in environments shared with humans. ILIAD will enable the transition to automation of intralogistic services with key stakeholders from the food distribution sector, where these challenges are particularly pressing. We will develop robotic solutions that can integrate with current warehouse facilities, extending the state of the art to achieve self-deploying fleets of heterogeneous robots in multiple-actor systems; life-long self-optimisation; manipulation from a mobile platform; efficient and safe operation in environments shared with humans; and efficient fleet management with formal guarantees. Scientifically, ILIAD pursues ambitious goals for complex cognitive systems in human environments beyond a specific use-case. We will overcome limitations in the state of the art in tracking and analysing humans; quantifying map quality and predicting future states depending on activity patterns inferred from long-term observations; planning of socially normative movements using learned human models; integration of task allocation, coordination and motion planning for heterogeneous robot fleets; and systematically studying human safety in mixed environments, providing a foundation for future safety standards. Our consortium is uniquely placed to tackle these challenges and to maximise exploitation beyond the project’s duration. It includes partners with a proven track record in all key research areas, leading technology providers for intralogistics, end users that are leading in their respective markets, and the National Centre for Food Manufacturing at partner UoL, facilitating access to realistic test sites. This mix of partners will ensure a very high impact of the project results.

Innnovation Radar's analysis of this innovation is based on data collected on 18/11/2019.