Discover great EU-funded Innovations
Smart & Sustainable Society INNOVATION
Multienzymatic system for converting CO2 and ethanol into lactic acid for biodegradable polymers
SHARE:
Market Maturity: Business Ready
These are innovations that are putting concrete market-oriented ideas together and are, for example, pursuing market studies, business plans, engagements with relevant partner and end-users. Learn more
Market Creation Potential
This innovation was assessed by the JRC’s Market Creation Potential indicator framework as addressing the needs of existing markets and existing customers. Learn more
Location of Key Innovators developing this innovation
Key Innovators
UN Sustainable Development Goals(SDG)
This innovation contributes to the following SDG(s)
SUSTAINABLE DEVELOPMENT GOAL 12
Ensure sustainable consumption and production patterns

The UN explains: "Sustainable consumption and production is about promoting resource and energy efficiency, sustainable infrastructure, and providing access to basic services, green and decent jobs and a better quality of life for all. Its implementation helps to achieve overall development plans, reduce future economic, environmental and social costs, strengthen economic competitiveness and reduce poverty.

The EU-funded Research Project
This innovation was developed under the Horizon 2020 project BIOCONCO2 with an end date of 31/12/2021
  • Read more about this project on CORDIS
Description of Project BIOCONCO2
The main objective of BIOCON-CO2 is to develop and validate in industrially relevant environment a flexible platform to biologically transform CO2 into added-value chemicals and plastics. The versatility and flexibility of the platform, based on 3 main stages (CO2 solubilization, bioprocess and downstream) will be proved by developing several technologies and strategies for each stage that will be combined as puzzle pieces. BIOCON-CO2 will develop 4 MCFs based on low-energy biotechnological processes using CO2 from iron&steel industry as a direct feedstock to produce 4 commodities with application in chemicals and plastics sectors using 3 different biological systems: anaerobic microorganisms (C3-C6 alcohols by Clostridia), aerobic microorganisms (3-hydroxypropionic acid by Acetobacter) and enzymes (formic acid by recombinant resting E. coli cells and lactic acid by multi-enzymatic system). The technologic, socio-economic and environmental feasibility of the processes will be assessed to ensure their future industrial implementation, replicability and transfer to other CO2 sources, such as gas streams from cement and electricity generation industries. BIOCON-CO2 will overcome the current challenges of the industrial scale implementation of the biotechnologies routes for CO2 reuse by developing engineered enzymes, immobilization in nanomaterials, genetic and metabolic approaches, strain acclimatization, engineered carbonic anhydrases, pressurized fermentation, trickle bed reactor using advanced materials and electrofermentation. The project aims to capture at least 4% of the total market share at medium term (1.4Mtonnes CO2/year) and 10% at long term (3.5Mtonnes CO2/year) contributing to reduce EU dependency from fuel oils and support the EU leadership in CO2 reuse technologies. Policy recommendations and public perception and acceptance will be explored and a commercialization strategy will be executed by a detailed exploitation plan and technology transfer.

Innnovation Radar's analysis of this innovation is based on data collected on 25/01/2020.
The unique id of this innovation in the European Commission's IT systems is: 19007